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Abstract. This paper deals with the diffraction radiation generated by an electric charge, 
that moves at constant speed past a cylindrical obstacle. It is shown how the problem can be 
reduced to the problem of plane-wave diffraction when a suitable complex angle of 
incidence is introduced. Two alternative expressions for the radiated energy are obtained. 
The link between the two is furnished by the generalized form of the scattering cross section 
theorem. Both the moving line charge and the moving point charge are considered. As a 
special case, the wedge-like obstacle has been treated. Using Sommerfeld’s type of integral 
representations, a solution of the relevant problem has been obtained. Numerical results 
pertaining to the total radiation loss of the point charge are presented. 

1. Introduction 

When a charged particle moves past a conducting structure it loses energy due to 
radiation, the so-called diffraction radiation. This phenomenon is of considerable 
importance in several domains in physics, in particular it occurs in particle accelerators. 
In a number of papers the diffraction radiation has been investigated, the most 
extensive investigation being by Bolotovskii and Voskresenskii (1966). In the present 
paper, the diffraction radiation from a charge moving past a cylindrical obstacle is 
considered. It will be shown that its calculation can be reduced to the problem of 
calculating the diffraction of a plane wave (with a complex angle of incidence) by the 
obstacle. 

The usual procedure for obtaining the total radiation loss is to consider the energy 
radiated in the far field. In the present paper, an alternative expression for the total 
radiation loss is obtained by considering the mechanical work done to move the charge 
against the action of the diffracted field. Then, the physics of the interaction between 
the diffracted field and the moving charge becomes very distinct. The link between the 
two expressions obtained for the radiation loss is nothing but the well known scattering 
cross section theorem, when the latter is generalized to complex angles. Also, a 
reciprocity relation for the diffracted field is derived. First the two-dimensional problem 
of a line charge moving past the cylindrical obstacle is solved and after that the 
extensions to a moving point charge are outlined. 

As a special case, the radiation from a line charge moving past a perfectly conducting 
wedge is considered. An exact solution is obtained by employing Sommerfeld’s well 
known integral representations for plane-wave diffraction (Bowman et a1 1969) even 
though the latter have to be extended to complex angles of incidence. Also, the 
problem of the point charge is considered. Some results that have been obtained by 
Gilinskii (1963) are improved and numerical results for the radiation loss of the point 
charge are presented. 
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2. Diffraction radiation from a line charge moving past a cylindrical obstacle 

2.1. Formulation of the general problem 

First we consider the case of a line charge with charge q per length in the y direction, 
moving in the x direction of a Cartesian coordinate system. The obstacle is cylindrical in 
the y direction and is assumed to be a perfect electrical conductor. The domain outside 
the obstacle is assumed to be a vacuum with permittivity eo and permeability F ~ .  The 
line charge moves with velocity U = u o i x ( ~ v o ~  < co, co = velocity of light in vacuum) along 
the trajectory z = zo = constant. For convenience we assume zo > zmax where zmax 
denotes the maximum attainable value of z at the obstacle. The y component of the 
magnetic-field vector is the fundamental unknown quantity and can be written (van 
den Berg 1973a) as 

Hy(x, z,  t )  ='.e(/om Hyw(x, z )  exp(-iwt) dw 
T 

with 

HY&, 2) = VO(V'(X, z ) +  v"(x, z ) ) ,  

0 - 2 4  sgn(v0) exp[-ko(ci/vi- v -1 
V'(x, z )  = exp(icuox -iyoz) 

201 

when --CO < z < zo, 

in which 

cyo = ( w / u o )  = ko(co/vo), 

The incident field V' pertains to the field of the moving line charge in the absence of the 
obstacle. The diffracted field v" from the obstacle has to satisfy the source-free 
two-dimensional Helmholtz equation in the domain outside the obstacle. Further, the 
boundary condition 13 V/an  = 0 on the obstacle has to be satisfied, in which V = V' + v" 
and a/an is the derivative along the outward normal to the boundary Cof the obstacle. 

yo = iko(ci/vi- l)*", ko = w ( ~ ~ p ~ ) l ' ~  = (w/co) .  

For convenience, we further introduce the polar coordinates (p,  4) as 

x = p  cos 4, z = p s i n 4 ,  with OSp<m,  OS4<27r, (2) 

and the parameter $o through 

V'(p, 4) = exp[ikop cos(4 -&,)I when T S 4 27r, (4) 

with 

40= ( - i $ O  if vo>O 

if vo< 0. T + iq0 
Hence, V' can be regarded as an incident plane wave with a complex 'angle of incidence' 
40. Consequently, when the known techniques in the theory of plane-wave diffraction 
are extended to complex angles of incidence, they can be used to attack the present 
problem of diffraction radiation. 
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2.2. Radiation loss 

A representation for vd can be obtained from the two-dimensional form of Green’s 
theorem. The result is 

aG 
an 

vd(x, z )  = IC V(x’, 2’) y d s ‘  ( 5 )  

1 2 1/2 when (x, z)  outside C, with G =$Hb“[ko(x - x ’ ) ~ + ( z  - z  ) I 
Letting (x, z )  approach C and invoking the boundary condition on C, we obtain an 

integral equation from which V(x, z )  on C can be solved. Once this has been done, the 
far field is obtained as 

. 

as kop+m, 

with 

(7) 
a 

an’ Fo(4)  = IC V(x’, 2 ’ )  - exp[-ikop’ cos(4 -4’)]ds’. 

From this, an expression for the total radiation loss is obtained by calculating the energy 
per length of the line charge radiated through a cylinder of unit length and large radius 
enclosing the obstacle. By using (1) and Maxwell’s equations, we obtain 

in which the asterisk denotes the complex conjugate. This expression, however, gives no 
direct insight in the mechanism of interaction of the field of the charge with the field 
diffracted by the obstacle. This situation greatly improves if, in (9, we employ the 
angular spectrum representation of the Hankel function (Morse and Feshbach 1953). 
Then we obtain for the diffracted field an expression of the form 

in which 

a 
an Bo(a) = IC V(x’, z’)  7 exp(-iax’ -iyz’) ds’, 

with 

y = (ki- a 2 y 2 ,  Re(?) 30, Im( y )  a 0. 

We observe that (10) yields a representation in terms of a continuous plane-wave 
spectrum; its propagating waves (la1 < ko) represent the diffraction radiation in the 
domain zmaX < z <CO. Now, the radiation loss per unit length of the line charge should 
be equal to the mechanical work Wmech per length of the line charge, done to move the 
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line charge at a constant speed in the x direction against the action of the diffracted field 
from the obstacle. The latter is given by 

in which, as 2 0 )  zmax, 
CO (6" 2 d o  I, BO(a) exp[i(ax + yz -ut)] 

d -1 
E,(x, 2, t )  = 7 Re 

4T 

The latter result has been derived with the use of ( l ) ,  (10) and Maxwell's equations. 
Substituting (13) in (12) and interchanging the order of integration, we finally obtain 

Vi  CO 

Wmech =-? I W, dw with W, =4 Re(- Bo(ao)). (14) 
T o  IWEO 

The quantity ( 2 / ~ )  W, dw can be interpreted as the differential radiation loss per length 
of the line charge caused by radiation with angular frequencies between w and w +dw. 
It only depends on the amplitude Bo(ao) of the spectral wave of (10) whose speed along 
the x direction is uo. This is, as it should be, the only spectral wave that can interact with 
the incident wave generated by the particle. 

Using (2) and (3) in the expression (1 1) for Bo(ao) and comparing the result with the 
expression (7) for F0(4) ,  we obtain 

in which the expression for the far-field amplitude is extended to a complex 'angle of 
observation'. As a matter of fact, the two expressions (9) and (14) for W, should yield 
the same result. That this indeed is the case, can be proved by observing that 

v"av"* ds) = -1m ( VT a V* ds), 

since a v"/an = -a V'/an on C and Im({,V'(a V'*/an) ds) = 0. With either (1) and (1 l ) ,  
or (4) and (7) we further have 

In this context, relation (18) is the well known scattering cross section theorem (Jones 
1955, de Hoop 1959) in the theory of the plane-wave diffraction, but now extended to 
complex angles. 

Along similar lines, a reciprocity relation for the diffracted field can be derived. Let 
V, and vb be the fundamental field functions to line charges moving with velocities U, 

and u b  in the x direction, respectively. Let aa,b, f+!'a,b, & b ,  Fa,b  and Ba.6 denote the 
relevant quantities defined by ( l ) ,  (3), (4), (7) and (11). Following the method outlined 
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by de Hoop (1960) in the plane-wave diffraction theory, we then obtain from Green’s 
reciprocity theorem 

a vb a vt, 
an Jc Vu-&= Jc V b , n d s .  

With either (1) and (1 l ) ,  or (4) and (7) we now observe that 

Bu ( - a b )  = Bb(-au), or F a  (r f 4 b )  = F b ( r  + 4 u ) ,  (20) 

Ba(a0) = Bb(-a~)r (21) 

which is the desired reciprocity relation. In the special case au = - a b  = ao, we have 

i.e. if we replace zio by -uo and keep zo the same; it follows from (14) and (21) that the 
radiation loss is the same. 

The results derived so far apply to cylindrical obstacles of bounded cross section, but 
it can be shown that the same results apply to cylindrical obstacles of unbounded cross 
section, e.g. wedge-shaped obstacles. 

2.3. The special case of a wedge-shaped obstacle 

In the special case of a wedge-like obstacle (figure 1) an exact solution can be obtained 
by employing Sommerfeld’s well known integral representations for plane-wave 
diffraction by a wedge (Bowman et a1 1969). Assuming that zmax = 0, uo > 0 and 

Figure 1. Cross section of the wedge configuration; U = (&- C$R)/TT, 1 G U G 2 .  

introducing a complex angle of incidence 4o = -ii,bo, the far-field amplitude is directly 
obtained as 

) FO(+)=Y (cos(r/v) -cos[(4 - r +ii,bo)/v] cos(r/v) -cos[(4 + r -24L-iqo)/v] 
(22) 

in which v = (& -+R)/7r. In the special case of a half-plane (v = 2), expression (22) 
agrees with the one given by Bolotovskii and Voskresenskii (1966), obtained by using 
the Wiener-Hopf technique. 

sin( T/ v) sin( r /  v )  + 2 

The spectral density W, of the radiation loss can now be written as 
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The integration with respect to 4 in the first expression for W, is rather difficult to carry 
out, therefore we take the second expression and directly obtain 

For a half-plane, we have 

Expression (25)  is in complete agreement with the one obtained by Bolotovskii and 
Voskresenskii (1966), when the integration in (23) with respect to 4 is carried out. The 
result in (24) is independent of the orientation of the wedge; it only depends on the 
included angle of the wedge. 

To find the total radiation loss W, we must integrate with respect to w.  Obviously, 
the integral of W, diverges logarithmically at low frequencies. This is due to the fact 
that the energy contained in the field of the moving line charge diverges logarithmically, 
the field varying inversely proportional to the distance from the trajectory of the moving 
line charge. 

For small velocities of the line charge, we have uo<< co (i.e. ccl0 is large), we then 
obtain from (22) 

and 

W, = when uo<< cos 
q2 exp[-2ko(co/vo)zo] 

2weo 

For large velocities of the line charge, we have DO+ CO (i.e. 40+ 0). Then IFo(+)[ has 
maxima along the directions 4 = 0 and 4 = 24JL - 2 ~ .  These angles correspond to 
radiation in the direction of motion of the line charge and radiation in the image 
direction with respect to the left-side I$ = 4JL of the wedge. The angular width of these 
maxima is of the order (&U;- 1)1/2 as UO+ co. Further, it can be shown that 

provided that ( & / v i -  1)’/2<< v sin(T/v). When v = 1, in the nature of things, the 
radiation loss equals zero. From (25) and (28) we observe that at large velocities of the 
line charge the radiation loss becomes independent of the included angle of the wedge 
and approaches the one due to a half-plane. 

3. Diffraction radiation from a point charge moving past a cylindrical obstacle 

3.1. Formulation of the general problem 

In this section, we consider the case of an electric point charge q moving with velocity 
U = uoix along the trajectory y = 0, z = zo = constant > z,,,. The y components of the 
electric field vector and the magnetic field vector are the fundamental unknown 
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quantities and can be written as (van den Berg 1973b) 

v -1 
p - 2q sgn(u0) exp(iypzo), 

~ ' ( x ,  z; P )  = ~ ' ( x ,  z; P )  = exp(iaox -iypz) when --CO < z < 20, 
in which 

'yp = i[k;(c;/v;- 1) +p2]1/2, 

v" and V" are now solutions of the source-free two-dimensional Helmholtz equation in 
the domain outside the obstacle, but with wavenumber 

kp =(k:-/32)1'2, Re(kp)-'O, Im(k,) 3 0. (3 1) 

Further, the boundary conditions U = 0 and aV/an = 0 on the boundary C of the 
obstacle have to be satisfied, in which U = U' + Ud and V = v' + v". 

For convenience, we can again introduce the polar coordinates (p ,  4) as defined in 
(2) and a parameter +bp in the range (PI < ko, through 

(ao] = kp cosh($@) = k, cos($@), 

yp = ikp sinh(t&) = kp sin($@), 

Then, the incident field functions can be written as 

O < $ p < ~  when lpl<ko. (32) 

U'h 4; P )  = W P ,  4; P )  = exp[ik,p cos(4 - 4P)l, T S ~ S ~ T ,  lpl<ko, (33) 

in which 

if v o > O ,  
4@={,r+i$, -i*o if v o < o .  

Hence, (33) can be regarded as an incident plane wave with wavenumber kp and 
complex angle of incidence +B. 

3.2. Radiation loss 

In order to investigate the radiated energy, we now start with the alternative expres- 
sions for v" and v" namely the far-field representations 
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in which 

and the angular-spectrum representations 

in which 

au 
A p ( a ) =  -1, Zexp(- iax’- iyz‘)  ds‘, 

(37) 
d B,(a) = V y  exp(-iax’-iyz’) ds’. J, an 

In (36)and(37),wehave y =  (ki-a2)”2,Re(y)a0,1m(y)s0,whichisnottobemixed 
up with the definition of y in (11). In the same way as in the case of the line charge, we 
now obtain two alternative expressions for the radiation loss of the point charge 

W=- (3 8) 

with either 

or 

K ( P )  = -%e01 UBI’ Im(Ap(w)) +PO Vi Im(B,d.o))I. (40) 
2kt3 

Obviously, the radiation loss only depends on the amplitudes Ap(ao) and Bp(ao)  of 
those spectral waves in (36) whose speed in the x direction equals uo. From (39), it 
follows that the integration with respect to p in (38) reduces to 1/31 < ko. This criterion 
arises entirely from the fact that the whole field is then evanescent. The two expressions 
(39) and (40) should yield the same result, hence 
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These results can be proved directly in the same manner as in 9 2.2 by using Green’s 
theorem. Similarly, reciprocity relations like (20) and (21) can be derived. Again, 
reversing the direction of motion of the point charge does not change the radiation loss. 

3.3. The special case of a wedge-like obstacle 

The corresponding wedge-problem for a point charge has been considered by Gilinskii 
(1963), but his method of analysis is very cumbersome, since a Hertzian vector is 
introduced and integral representations of Malyuzhinets and Tuzhilin (1963) for a 
Hertzian vector are used. No final results with respect to the radiation loss are 
presented. Therefore, a reconsideration of the problem seems appropriate. In this 
special case of a wedge-like obstacle (figure l), we again employ Sommerfeld’s integral 
representations for plane-wave diffraction by a wedge. Assuming that z,,, = 0, vo> 0 
and introducing a complex angle of incidence 46 = -i$6, the far-field amplitudes are 
directly obtained as (Bowman et a1 1969) 

{Ei::j)l = Z  (cos(r/v) - cos[(4 - ,r + i$6)/v] 
sin( IT/ v) 

), lPI<ko. (42) 
sin(,r/v) 

cos(,r/v) - cos[(C$ + IT - 2& - ilLP)/v] 
7 

The radiation loss of the point charge can then be obtained as 

with 

w 
= - [ E O (  UBI’ I ~ ( E ~ ( ~ + ~ . B ) ) + c L O V ; ~ ~  ~ m ( ~ p ( i + p ) ) ~ .  

2 k ,  

p = ko COS 6 

We now introduce the angle 8 as 

with O <  8 < IT. (44) 

Taking into account the y dependence exp(ipy) of each spatial spectral component, it is 
obvious that 4 and 6 are the angles of emergence of a radiating wave. Using these, (43) 
can be rewritten as 

d o  sin(6) de W,(+, e )  dC$, w = + J o  J 0 4 R  

with 

W, (4, e) = exp[ -2 ko( 3 - sin2 e) ’’* zO] 
6 4 ~ e o c o  vo 

(45) 
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Hence ( l /r2)  Wu(4, e )  d o  dCl is the differential radiation loss in the range of angular 
frequencies between w and o +dw, radiated into the solid angle d o  =sin(@) dB d+ In 
order to obtain the total radiation loss of the point, we prefer (43) with the second 
expression for W,(p) .  Since Im(EB(i$@)) = Im(Fp(i$B))r we arrive after performing the 
integration with respect to o, at 

sin( T/ v) 
cos(r/v)-cos[(2i$B - r ) / v ]  

in which 

This result is independent of the orientation of the wedge, depending only on the 
included angle of the wedge, In the special case of a half-plane (v = 2) the integration in 
(47) can be carried out analytically 

3q2  
3 2 r € . o Z o ( c o /  U")( c;/ U; - 1) 1'2' 

Wu=2 = (48) 

Expression (48) is in agreement with the one obtained by Kazantsev and Surdutovich 
(1963) who used the Wiener-Hopf technique. For arbitrary values of v, the integration 
in (47) is carried out numerically and the results are shown in figure 2. We observe that 
the total radiation loss W for a wedge is always smaller than the one pertaining to a 
half-plane. Further, we observe that for a very flat wedge-shaped obstacle, the losses 
are very small except in the case of ultra-relativistic velocity, where a very sharp 
increase takes place with increasing velocity. 

Figure 2. The ratio of the radiation loss W of a point charge moving past a wedge and the 
relevant value W,,,, for a half-plane. The figure near a curve denotes the included angle (in 
degrees) of the wedge under consideration. The orientation of the wedge is arbitrary. 
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For small velocities of the point charge, we have uo<< co (i.e. ILp is large). Then we 
obtain 

in which r( * ) denotes the gamma function. 
For large velocities of the point charge, we have uo+ co. Then Wu(4, 6) has the 

maxima along the directions 4 = 0, 8 = &r and 4 = 2#L-27r, 6 = ;T. These angles 
correspond to radiation in the direction of motion of the point charge and radiation in 
the image direction with respect to the left-side plane # = 4L of the wedge. The angular 
width of these maxima is of order [ c ~ / ( u o  sin 6)' - 1I1I2 when uo+ co. Further it can be 
shown that 

w+ w,=, as uo+ co, v # 1, (51) 
as we have already observed in figure 2. 

4. Conclusions 

In the present paper, a method has been presented of how problems in diffraction 
radiation can be handled rigorously. It is shown that they can be formulated in terms of 
plane-wave diffraction with complex angles of incidence. Further, it is shown how the 
radiated energy can directly be obtained from the far-field amplitude of the diffracted 
field, 'observed' at a specified complex angle. The result is extremely useful, since the 
sometimes difficult integration of the angular distribution of the far-field amplitude can 
be avoided. Further, the mechanism of interaction of the diffracted field with the 
moving charge is made more distinct. 

As a special case the consequences of a wedge-like obstacle are considered. The 
radiation loss is always independent of the orientation of the wedge and always less than 
the one pertaining to a semi-infinite screen. In the case of ultra-relativisticvelocities and 
when the wedge is very flat (say with an included angle of 170-180"), a very sharp 
increase of the radiation with increasing velocity takes place. 
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